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Global efforts to reduce tropical deforestation rely heavily on the
establishment of protected areas. Measuring the effectiveness of
these areas is difficult because the amount of deforestation that
would have occurred in the absence of legal protection cannot be
directly observed. Conventional methods of evaluating the effec-
tiveness of protected areas can be biased because protection is not
randomly assigned and because protection can induce deforesta-
tion spillovers (displacement) to neighboring forests. We demon-
strate that estimates of effectiveness can be substantially im-
proved by controlling for biases along dimensions that are
observable, measuring spatial spillovers, and testing the sensitivity
of estimates to potential hidden biases. We apply matching meth-
ods to evaluate the impact on deforestation of Costa Rica’s re-
nowned protected-area system between 1960 and 1997. We find
that protection reduced deforestation: approximately 10% of the
protected forests would have been deforested had they not been
protected. Conventional approaches to evaluating conservation
impact, which fail to control for observable covariates correlated
with both protection and deforestation, substantially overesti-
mate avoided deforestation (by over 65%, based on our estimates).
We also find that deforestation spillovers from protected to un-
protected forests are negligible. Our conclusions are robust to
potential hidden bias, as well as to changes in modeling assump-
tions. Our results show that, with appropriate empirical methods,
conservation scientists and policy makers can better understand
the relationships between human and natural systems and can use
this to guide their attempts to protect critical ecosystem services.

avoided deforestation � conservation policy � empirical evaluation �
spatial spillovers

Conservation practitioners and policymakers need credible in-
formation on how policies affect ecosystems (1, 2). Despite the

importance of such information, we know little about the impact of
conservation policies. After a review of the evidence base, the
Millennium Ecosystem Assessment (3) listed the following as one of
its ‘‘Main Messages’’ (p 122): ‘‘Few well-designed empirical analyses
assess even the most common biodiversity conservation measures.’’

One of the most common biodiversity conservation measures is
the use of protected areas to reduce deforestation (3). Reducing
deforestation has also become central to climate mitigation strat-
egies (4–6). Given that protected areas now cover more than 11%
of global land surface (7), an important question to ask is ‘‘How
effective are protected areas in reducing deforestation?’’ Answering
this question is complicated because ‘‘reduced deforestation’’ is not
directly measurable. Most evaluations rely on indirect estimates
based on comparisons between protected and unprotected areas.
Such methods can easily be biased when protection is not randomly
assigned but rather is determined by characteristics that also affect
deforestation (e.g., land productivity, accessibility). Moreover, hu-
mans can respond to protection in one location by changing land
uses in neighboring locations (8), and these spillovers can further
bias estimates of protection’s impacts.

Any analysis of a program designed to protect ecosystems and
their concomitant services should include at least the following

three elements: (i) control for bias that arises when observable
biophysical and socioeconomic factors affect both which ecosystems
are protected and which are most threatened; (ii) measurement of
spatial spillovers; and (iii) assessment of the sensitivity of results to
possible hidden bias caused by unobservable factors that affect both
which ecosystems are protected and which are most threatened. By
combining these three elements, we make a methodological con-
tribution to the conservation-science literature, as well as illustrate
the potential pitfalls of conventional approaches to measuring
conservation impact.

Our study examines the measurement of avoided deforestation
from protected areas in Costa Rica. We chose Costa Rica because
it has one of the most widely lauded protected-area systems (9) and
is a leader in the debate to have ‘‘avoided deforestation credits’’
recognized by international climate-change conventions. It also had
one of the top deforestation rates during the 1960s and 1970s (10),
driven mainly by the expansion of cattle grazing and coffee and
banana production (11). In 1960, Costa Rica had �3 million
hectares of forest. By 1997, more than one million hectares had
been cleared and �900,000 hectares assigned to legal protection.
We address the question, ‘‘How much more forest would have been
cleared in the absence of these protected areas?’’

In a review of 49 protected-area assessments (12), 13 assessments
examine deforestation only in the protected areas. The other
assessments compare deforestation inside and outside protected
areas, and all but four find lower deforestation rates inside pro-
tected areas. Other studies use similar methods and report similar
results (e.g., 13, 14). For example, Oliveira et al. (13) assess
protected-area effectiveness by comparing deforestation rates
within 20 km of roads inside and outside of protected areas. They
find lower rates inside the protected areas and conclude that
protected areas are effective.

Such assessments are valid only if protection were randomly
assigned across the landscape. However, the Millennium Ecosystem
Assessment (3) (p 130) reports that ‘‘many protected areas were
specifically chosen because they were not suitable for human use.’’
Empirical studies from various countries support this assertion (e.g.,
9, 15–20). Thus protected and unprotected lands differ, on average,
in characteristics that also affect deforestation.

A few assessments have formally controlled for such differences
(19, 21–24), but they either use a small set of covariates, which can
exacerbate bias when other relevant covariates are not included, or
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highly parametric, regression-based methods. Moreover, no pub-
lished analysis has tested the sensitivity of results to hidden bias that
may not have been removed by conditioning on covariates. As
explained below, we use a rich data set and matching methods to
control for observable sources of bias and then test the sensitivity
of our results to hidden bias.

Furthermore, protected areas can influence human use on
unregulated lands. Such spillovers (‘‘leakage’’) can be negative (e.g.,
displacement of agricultural pressures, exploitation to meet tourism
demand, or preemptive clearing by nearby landowners to prevent
regulation of their lands). They can also be positive (e.g., enhanced
law enforcement on private lands or establishment of private
reserves nearby).†† If spillovers exist, the use of surrounding un-
protected lands as controls biases estimates of protection’s effect.
Moreover, any estimate of avoided deforestation from protection
must assess the protection’s impacts outside protected areas.

Results
Since the 1960s, more than 150 protected areas have been desig-
nated in Costa Rica. We estimated the effect of protection on
deforestation between 1960 and 1997. Protection comprises na-
tional parks, biological reserves, forest reserves, protected zones,
and wildlife reserves. We have comparable forest-cover data for
1960, 1986, and 1997 (see Data). To permit more accurate estimates
of protection’s impact using these observations, which span de-
cades, we broke this thirty-seven-year time period into two cohorts
of protected areas: (i) established before 1979, for which we took
land that was forested in 1960 and compared deforestation in
protected and unprotected forests and (ii) established between 1981
and 1996, for which we took land that was forested in 1986 and
compared deforestation in protected and unprotected forests. No
protected areas were established in 1979 or 1980 and, further, only
4% of the forest protected between 1981 and 1996 was protected in
1981 [see Methods and supporting information (SI) Text for more
details].

Controlling for Overt Bias. We wished to control for differences
among protected and unprotected plots across characteristics that
affect both deforestation and protection decisions. Based on our
knowledge of the history of Costa Rica’s protected areas and the
literature on tropical deforestation (11, 25–28), we controlled for a
core set of variables consistently found in studies to affect defor-
estation: land use productivity (based on climate, soil and slope),
distance to forest edge, distance to roads, and distance to nearest
major city. We also controlled for an extended set of variables that
includes factors whose causal effects are less clear: distance to
railroads and rivers, population density, immigrants, education,
poverty and size of the administrative district (see Data). We focus
on the core covariate set here (results are similar using the extended
covariate set; Tables S1–S8).

In Table 1, we assess the differences between protected and
unprotected plots, before and after matching, for the pre-1979
cohort. All plots were forested in 1960 (see Data). The second
column of Table 1 presents mean covariate values for protected
plots and the third column presents mean covariate values for
unprotected plots. The fourth column shows the difference in these
means. Clearly, looking at the sample before matching, the inherent
productivity of protected plots is much lower than that of unpro-
tected plots; whereas �90% of unprotected plots are on high- or
medium-productivity lands, only 10% of protected plots comprise
such lands. Protected plots were also farther from national roads
and the forest frontier than unprotected plots in the 1960s. Such
characteristics tend to lower the likelihood of deforestation. Pro-

tected plots were, however, a little closer to major cities, which may
decrease the likelihood of deforestation (more law enforcement) or
increase it (higher market demand). A probit model that regresses
a binary variable for protection on the covariates indicates that
these covariates indeed influence the probability of protection, with
the land-use productivity classes being the most influential. Similar
covariate patterns were found for protected plots after 1981 (Table
S9). Analysis with the extended covariate set indicates that protec-
tion is positively related to district size; population density; and the
proportion of poor, immigrants, and educated citizens.

Given that protection is influenced by observable characteristics
that also affect deforestation, we used matching methods to esti-
mate avoided deforestation. Matching methods are being increas-
ingly applied as one way to establish cause–effect relationships with
nonexperimental data (29). Matching works by comparing out-
comes on protected and unprotected forest plots that were ‘‘very
similar’’ in terms of the observed baseline covariates. The goal of
matching is to make the covariate distributions of protected and
unprotected plots similar (called covariate balancing). Matching
can be viewed as a way to make the protected and unprotected
covariate distributions look similar by reweighting the sample
observations (e.g., unprotected plots that are poor matches receive
a weight of zero). Thus, matching mimics random assignment
through the ex post construction of a control group.

The fourth and fifth columns of Table 1 present two measures of
the differences in the covariate distributions between protected and
unprotected plots: the difference in means and the average distance
between the two empirical quantile functions (values �0 indicate
deviations between the groups in some part of the empirical
distribution; Table S10 presents other balance measures). If match-
ing is effective, both of these measures should move dramatically
toward zero (30). Given the central role of agriculture in defores-
tation in Costa Rica, we particularly wanted good balance on
land-productivity classes.

††We focused on local spillovers rather than more distant spillover effects, such as those
related to changes in global market prices, which are most appropriately studied in a
computable general equilibrium model.

Table 1. Covariate balance

Variable

Mean
value

protect
plots

Mean
value

control
plots*

Diff
mean
value

Avg.
raw

eQQ†

High productivity land,‡

proportion
Unmatched 0.006 0.204 �0.199 0.199
Matched 0.006 0.006 0.000 0.000

Medium productivity land,
proportion

Unmatched 0.021 0.203 �0.182 0.182
Matched 0.021 0.021 0.000 0.000

Medium-low productivity
land, proportion

Unmatched 0.073 0.507 �0.434 0.434
Matched 0.073 0.073 0.000 0.000

Distance to forest edge in
1960, km

Unmatched 2.916 2.026 0.890 1.029
Matched 2.916 2.731 0.203 0.174

Distance to road in 1969,
km

Unmatched 17.041 15.461 1.580 1.820
Matched 17.041 16.134 0.907 0.428

Distance to city, km
Unmatched 77.525 80.542 �3.017 16.807
Matched 77.525 77.603 �0.078 2.450

*Weighted means for matched controls.
†Mean (for categorical covariate) or median (for continuous covariate) difference
in the empirical quantile-quantile plot of treatment and control groups on the
scale in which the covariate is measured.

‡Dummy variables. Low productivity land is the omitted category.
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The last two columns of Table 1 indicate that matching substan-
tially improves covariate balance. Each protected plot is matched
with two unprotected plots (Methods). The matched unprotected
plots have the same distribution of productivity classes and have
very similar (but not equal) distributions of the accessibility covari-
ates. The matched unprotected plots remain slightly closer to roads
and forest edges. Similar patterns of prematching covariate imbal-
ance and postmatching balance are also observed for the post-1981
cohort (Table S9).

Instead of using matching methods, one could control for ob-
servable sources of bias by using a parametric regression analysis.
We prefer matching followed by a simple test of mean forest cover
change between matched protected and unprotected plots for three
reasons: (i) we wish to make as few parametric assumptions as
possible about the underlying structural model that relates protec-
tion to deforestation, and regression analysis risks a specification
bias (it assumes linearity in the response surface); (ii) regression
analysis uses observations off the common support; and (iii) simple
postmatching comparisons of means allows us to contrast our
results directly with conventional methods in the literature that
depend on ‘‘inside-outside’’ comparisons of means. Successful
matching makes treatment-effect estimates less dependent on the
specific postmatching statistical model (30). To confirm that our
postmatching avoided deforestation estimates are not model de-
pendent, we also ran postmatching regressions.

Avoided Deforestation Estimates. Table 2 presents estimates of
avoided deforestation as a proportion of forest protected. Estimates
based on matching methods are compared with estimates based on
more conventional methods in the conservation-science literature.
Plots are the minimum mappable unit (3 ha each, chosen at
random). Thus our outcome variable is binary: a plot is either
forested or deforested (deforested, �80% canopy cover). The
outcome variable is the difference between the change in forest
cover on protected plots (Y � 1 if deforested) and the change in
forest cover on matched unprotected plots in the same period
(1960–1997 for pre-1979 protected areas; 1986–1997 for post-1981
protected areas). Thus, a negative sign indicates that protection
resulted in avoided deforestation.

The first column presents results for protection before 1979. The
first row presents the avoided deforestation estimates from the

matching approach. It implies that 11.1% of protected plots would
have been deforested by 1997 in the absence of protection (P �
0.01). The second row presents an estimate based on matching that
uses calipers to improve covariate balance (Methods) (Table S11).
Calipers define a tolerance level for judging the quality of the
matches; if a protected plot does not have a match within the caliper
(i.e., available controls are not good matches), it is eliminated from
the sample. Four hundred and eleven protected plots were elimi-
nated. They tended to be very remote plots on poor lands. Calipers
reduce bias, but at the cost of estimating avoided deforestation on
a subsample that may not be representative of the population of
protected plots. Yet the avoided deforestation estimate of 12.4%
(P � 0.01) is not much different from the estimate without
calipers.‡‡

In contrast, the avoided deforestation estimates generated by
conventional methods used in the conservation-science literature
are much larger. The third row in Table 2 (DIM) replicates the kind
of analysis done in the majority of protected area evaluations:
deforestation on protected plots is compared with deforestation on
unprotected plots, without controlling for other covariates. This
method implies that 44% of the protected plots would have been
deforested by 1997 had they not been protected before 1979.

Some of the conventional inside-outside analyses restrict the
control group to an unprotected zone around each protected area
(e.g., 14). Using a 10-km zone, the fourth row replicates this type of
analysis and generates a slightly smaller estimate of 38%. Note that
some analyses of this type (e.g., 14) do not, as we did, exclude lands
already deforested at the baseline. Because protection is much less
likely to be assigned to deforested plots, such methods suffer from
an additional source of bias. As indicated in the fifth row of Table
2, this approach implies that 50% of protected plots would have
been deforested had they not been protected.

The final row represents an estimate derived from a baseline
reference, which is the most commonly suggested way of measuring
avoided deforestation in climate-change negotiations. This method
models deforestation in a given period as a function of observable

‡‡We also developed an approach that allows the use of plots protected after 1981 as
controls by directly adjusting their observed outcomes based on the post-1981 analysis.
Such an adjustment is useful when excluding such plots substantially worsens covariate
balancing, which is not the case in our context (SI Text).

Table 2. Estimated avoided deforestation as a proportion of forest protected

Approaches

Protected before 1979 (control:
never protected and forested

in 1960)

Protected after 1981 (control:
never protected and forested

in 1986)

Matching approaches*
Covariate matching �0.111 (0.029) �0.027† (0.022)

�N matched controls� �933� �681�

Covariate matching with calipers �0.124 (0.019) �0.053 (0.010)
�N outside calipers� �411� �916�

{N matched controls with calipers} {924} {642}
Conventional conservation science approaches

Difference in means (DIM)‡ �0.438 �0.083
DIM: controls within 10 km of protected area �0.375 �0.131

�N available controls� �3866� �302�

DIM: controls within 10 km of PA, include plots
deforested pre-protection

�0.497 �0.518

{N protected plots} {1996} {1494}
�N available controls� �4956� �603�

Baseline reference estimate �0.392 �0.224

N protected plots 2711 2022
N available controls (10371) (4724)

*Standard errors for post-matching estimates, using variance formula in ref. 35, are in parenthesis.
†P � 0.10; all other estimates significant at P � 0.01.
‡A Chi-squared test is used to evaluate the difference in means.
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covariates (SI Text). The estimated equation, based on the same
core covariate set used in the matching approach, is used to predict
the expected deforestation probability for each forested plot in the
next period. The difference between the predicted and the actual
deforestation rates is the estimated avoided deforestation. Using
this method implies that 39% of protected plots would have been
deforested in the absence of protection.

The dramatic differences between the estimates based on
matching (first two rows) and the estimates based on methods
conventionally used to evaluate protected-area effectiveness
(rows three through six) suggest that the conventional methods
can lead to substantially inaccurate estimates. To put Table 2’s
estimates into perspective, consider that 483,339 ha of forest
were protected between 1960 and 1980. Thus, conventional
methods imply 181,252–240,220 ha of avoided deforestation. In
contrast, the matching methods imply 53,651–59,934 ha of
avoided deforestation.

In column 2, the analysis for the post-1981 cohort indicates
similar patterns. Matching without a caliper (first row) suggests that
protection post-1981 has little effect on avoided deforestation;
fewer than 3% of the protected plots would have been deforested
in the absence of protection (P � 0.10). However, one-third of the
forest protected between 1981 and 1996 was in a single protected
area (La Amistad), located in a remote region near the Panamanian
border. Good matches do not exist for many of the plots from this
protected area. When we apply calipers, many of these remote plots
are dropped and the estimated avoided deforestation rate rises to
5.3% (dropping all plots protected before 1985 increases it to 6%).§§

These estimates imply 11,342–22,264 ha of avoided deforestation
from protection after 1981. The conventional estimates are again
higher than the matching estimates (1.6 to 19 times higher).

Although matching substantially improves the covariate balance
between protected and unprotected plots, some imbalance remains:
protected plots are slightly farther from the forest edge and from
transportation infrastructure than their matched counterparts. A
postmatching (weighted) regression that adjusts for any small
remaining covariate imbalances yields identical estimates to those
in Table 2. To test model dependence (30), we used a variety of
postmatching regression specifications with the extended covariate
set (i.e., match on core set but regress on variables in the extended
set). We found the avoided deforestation estimates differ little from
those in Table 2 (fewer than two percentage points) (Table S12).

Fig. 1 visually presents the avoided deforestation estimates for
the full period 1960–1997 based on the different methods in Table
2. Matching methods suggest that between 64,993 and 82,198 ha of
forest protected between 1960 and 1996 would have been defor-
ested by 1997 in the absence of protection (7–9% of the protected
area system). Conventional methods, however, imply between
236,282 and 457,818 ha of avoided deforestation (26–51%).

Controlling for Spatial Spillovers. To test for spillovers from pro-
tected lands onto nearby unprotected lands, we used matching
methods to control for observable differences in unprotected lands.
In this context, the treatment group comprises unprotected plots
that are within a specified distance from the boundary of a
protected area. The control group comprises unprotected plots that
are beyond this distance.

The results suggest that the average spillover effect is small and,
if it exists at all, is positive; in other words, protection reduces
deforestation outside the protected area (Table S13). For the
pre-1979 cohort, the postmatching estimates imply that, at most,
4.5% of the 1997 forest within two kilometers of protected areas can

be classified as avoided deforestation. Neither estimate is signifi-
cantly different from zero at the 1% level; only one is significant at
the 5% level. We find no evidence of spillover effects beyond two
kilometers or on forests near the post-1981 cohort of protected
areas.

Given the weak evidence for spillover effects from Costa Rica’s
protected areas, we conclude that the matching estimates in Table
2 and Fig. 1 reflect the full effect of protected areas on deforestation
within and outside protected areas between 1960 and 1997. Had we
found strong evidence of spillovers, we would have controlled for
potential bias from these spillovers in our estimates by excluding
neighboring plots from the set of available controls or by directly
adjusting the forest cover outcomes on neighboring plots based on
our estimates of the extent and magnitude of the spillovers (see SI
Text).

Sensitivity Test to Hidden Bias and Other Robustness Checks. Despite
our efforts to control for observable sources of bias, protection and
forest-cover change may exhibit correlation in the absence of an
effect of protection because of failure to match on a relevant but
unobserved covariate. In our analysis, the main concern is that
protected plots may be unobservably less likely to be deforested
than their matched controls. Sensitivity analysis examines the
degree to which uncertainty about hidden biases in the assignment
of protection could alter the conclusions of our study. We used
Rosenbaum’s recommended sensitivity test (31).

This test assumes that each plot has a fixed value of an unob-
served covariate. The unobserved covariate not only affects pro-
tection decisions, but also determines whether deforestation is
more likely for the protected plots or their matched controls. Thus,
this sensitivity test is conservative. Matched forested plots differ in
their odds of being protected by a factor of � as a result of this
unobserved covariate (� � 1 in the absence of hidden bias). The
higher the level of � to which the effect of protection on defores-
tation remains significantly different from zero, the less likely is the
explanation that the avoided deforestation we detect is simply a
result of matching protected plots with unprotected plots that are
unobservably more likely to be deforested (details in SI Text).

Table 3 presents the analysis for the estimates from matching
with calipers (recall the post-1981 without-calipers estimate is not
statistically different from zero even in the absence of hidden bias).
The second column in Table 3 indicates that our avoided defores-
tation estimate of 12.4% of the pre-1979 protected forest remains
significantly different from zero even in the presence of moderate

§§Lower rates of avoided deforestation in this period are partially because of declines in
deforestation after the most productive lands had been developed, international beef
prices dropped, the manufacturing and service sectors grew, and donor-imposed struc-
tural readjustment in the mid-1980s led to a decline in agricultural subsidies (25).
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Fig. 1. Avoided deforestation estimates 1960–1997.
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unobserved bias. If an unobserved covariate caused the odds ratio
of protection to differ between protected and unprotected plots by
a factor of as much as 2.15, the 99% confidence interval would still
exclude zero (without-calipers estimate is slightly more robust). The
third column indicates that the post-1981 estimate of 5.3% remains
significantly different from zero (P � 0.01) in the presence of even
greater hidden bias (up to � � 2.85). These results suggest that
avoided deforestation is likely to be greater than zero unless there
is relatively strong hidden bias.

Assuming additive treatment effects and using a different match-
ing method (kernel matching), we can use a similar test to examine
the degree to which unobserved bias could cause us to underesti-
mate the effect of protection (SI Text). As with the previous test, this
test is conservative. We constructed 99% confidence intervals for
our estimate under varying degrees of unobserved bias and con-
sidered the lower bound. The results are presented in the fourth and
fifth columns of Table 3. Even if an unobserved covariate causes the
odds ratio of protection to differ between protected and unpro-
tected plots by a factor of 4 (a substantial amount of hidden bias),
the 99% confidence interval would still exclude the conventional
method estimates in Table 2.

In contrast, the pre-1979 spatial spillover estimate that was
significantly different from zero is not robust to even a modicum of
hidden bias: if an unobserved covariate caused the odds ratio of
having a protected area located near the plot to differ between
matched unprotected plots by a factor of only 1.15, the 90%
confidence interval would include zero (Table S14). These results
provide more evidence that spatial spillovers are negligible.

Finally, we conducted robustness checks (SI Text) that varied the
sample composition (e.g., exclude plots), the matching specifica-
tions (e.g., vary number of matches), and the spatial scale at which
the analysis is conducted (i.e., use administrative districts rather
than pixels as the unit of analysis). In no case did our qualitative
conclusions about avoided deforestation in Costa Rica or the
difference in the estimates from matching and conventional ap-
proaches change.

Discussion
Our analysis illustrates how substantial improvements can be made
to estimates of protected area effectiveness. Unlike previous stud-
ies, our analysis comprises three key components: (i) use of
available data and matching methods to control for bias that arises
when observable biophysical and socioeconomic characteristics
affect both which forests are protected and which are deforested, (ii)
measurement of local spatial spillovers that controls for these same
observable characteristics; and (iii) assessment of the sensitivity of
results to possible hidden bias because of unobservable character-
istics that jointly affect which forests are protected and which are

deforested. Taking into account local spillovers from protection
(which we find are small), we show that between 64,993 and 82,198
ha of the 903,407 ha (7–9%) of Costa Rican forest protected
between 1960 and 1996 would have been deforested by 1997 in the
absence of protection. If our estimates are correct, conventional
methods substantially overestimate the impact of protected areas by
a factor of three or more: over two-thirds of the avoided defores-
tation claimed by these methods would be in error. These conclu-
sions are robust to potential hidden bias from unobservable con-
founding variables, as well as to alternative modeling assumptions.
Our methodology can guide future studies to measure the impact
of conservation policies and programs on a variety of environmen-
tal and social outcomes.

Conventional methods overestimate avoided deforestation in
Costa Rica because protection was not randomly distributed across
the landscape. In comparison with unprotected forests, protected
forests were located on lands that were, on average, less accessible
and of lower agricultural productivity. Protected forests thus had a
below-average probability of being deforested in the absence of
protection. This pattern of protection is common globally (3, 9,
15–20, 22). Thus, although further empirical confirmation is
needed, our analysis suggests that much of what is being described
as protection’s impacts may result from protected-area location
rather than protection itself. This knowledge can inform conser-
vation planning. For example, it implies that recent efforts in
conservation planning to jointly consider benefits, costs, and mea-
sures of threat of conversion are warranted (32). Moreover, it
suggests that protecting ecosystems and their services in the future
may require investments that are substantially different, in size and
in nature, from those made in the past.

Understanding how the spatial distribution of land-use regula-
tions affects deforestation is also relevant when designing Reduced
Emissions from Deforestation compensation policies. Such policies
contribute to climate-change mitigation by allowing polluters to
purchase emission offsets in the form of avoided deforestation
credits. In such schemes, the incentives for sellers to erroneously
posit high counterfactual deforestation rates, and thereby claim
avoided deforestation from protective efforts, are strong. Program
designers should attempt to mitigate such strategic incentives.

Costa Rica’s deforestation processes may continue to change
over time. Thus the future impacts of protected areas may differ
from those found in our retrospective analysis. Our methodology
can be used to validate predictive models of protection’s future
impact on deforestation (e.g., 33). Moreover, protected areas can be
designated for reasons other than preventing deforestation (e.g., to
promote tourism or reduce hunting). Clearly, more analyses of
protected-area effectiveness in other regions of the world and on
other outcomes are warranted. For future decision making, how-

Table 3. Sensitivity tests to hidden bias

�

Critical p-values for treatment effects† Lower bound of 99% confidence interval

Protected pre-1979 (control:
never protected and

forested in 1960)

Protected post-1981 (control:
never protected and forested

in 1986)

Protected pre-1979 (control:
never protected and

forested in 1960)

Protected post-1981 (control:
never protected and forested

in 1986)

1.75 �0.001 �0.001
2.00 �0.001 �0.001
2.25 0.035 �0.001
2.50 0.479 �0.001
2.75 0.936 0.005
3.00 0.998 0.020
3.25 0.999 0.057
1.5 �0.208 �0.074
2.0 �0.217 �0.081
3.0 �0.232 �0.098
4.0 �0.248 �0.104

†Test of the null of zero effect.
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ever, our analysis points to the need for rigorous empirical assess-
ments of the impacts of conservation investments.

Materials and Methods
For more details on data and methods see SI Text and Table S15.

Data. Forest cover is measured from a combination of aerial photographs ac-
quiredbetween1955and1960 (called the1960dataset), andfrom1986and1997
Landsat Thematic Mapper satellite images (Earth Observation Systems Labora-
tory, University of Alberta, Edmonton, AB) (9). We drew a random sample of
20,000 plots (3 ha) that were forested in 1960. After removing plots that were not
comparable (e.g., indigenous reserves), the final dataset comprised 15,283 land
plots, including 4,762 protected plots (2,711 pre-1979) covering all protected
areas except four small ones and five on islands (SI Text lists names of protected
areas). We combined forest-cover data with spatially explicit data on covariates
believed to affect both protected area location and deforestation. Geographic
Information System (GIS) data layers for forest cover, protected areas, and loca-
tions of major cities were provided by the Earth Observation Systems Laboratory.
Other GIS data layers included a map of land-use capacity based on exogenous
factors (soil, climate, topography) from the Instituto Tecnologico de Costa Rica
(San José, Costa Rica) and socioeconomic data from the Instituto Nacional de
Estadistica y Censos (Cartago, Costa Rica). GIS layers for transportation roads,
railroads,andtherivertransportationnetworkweredigitizedbyM.BuckHolland
(Madison, Wisconsin) from hardcopy maps of 1969 and 1991 road layers (map
source: Instituto Geográfico Nacional of the Ministerio Obras Publicas y Trans-
porte of Costa Rica, San José, Costa Rica). Data are summarized in Table S16.

Methods. Using cohorts with different years for the baseline forest reduces a
potential bias that can arise when using a single baseline for all protected areas.
The forest landscape facing a planner in the 1980s was different from the 1960
landscape we used as a baseline for the first cohort. The clearing that occurred
over those twodecadeswas likely tohavebeenonthebest lands for clearing,and
the protection decisions taken later were made on the remaining forest land.
Those decisions over time suggest the 1960 forest baseline may no longer resem-
ble theconditions facedbyaplannerwhennewprotectionwasestablished in the

early 1980s. We controlled for differences in observed dimensions by using
matching,but thegreater thedifferences inunobservabledimensionsbecauseof
these decisions, the more potential there is for hidden bias.

Splitting our sample into two cohorts reduced this potential for hidden bias.
For example, protection decisions in 1990 were made in a forest landscape very
similar to the 1986 baseline. Plots still forested in 1986 are thus much better
comparisons for protected areas established in 1990 than plots forested in 1960.
However, using two cohorts does not eliminate the potential for hidden bias. We
addressed potential hidden biases like this one through sensitivity analysis.

Based on an assessment of covariate balance quality across a variety of match-
ing methods, we chose nearest-neighbor covariate matching using the Mahal-
anobis distance metric. Matching is with replacement. The mean-variance
tradeoff in the match quality is resolved by using two nearest neighbors: the
counterfactual outcome is the average among these two (varying the number of
neighbors from one to ten changes the estimates very little). Based on recent
work that demonstrates that bootstrapping standard errors is invalid with non-
smooth, nearest-neighbor matching with replacement (34), we used Abadie and
Imbens’ variance formula, whose asymptotic properties are well understood (35).
We used a postmatching bias-correction procedure that asymptotically removes
the conditional bias in finite samples (35). For caliper matching, we defined the
caliper as 0.5 standard deviations of each matching covariate. We used the same
matching methods to measure spillovers, rather than highly parametric, conven-
tional spatial statistical models (e.g., a probit with spatial lag), because the latter
risk a specification bias. Moreover, generating a transparent estimate of the
average spillover is not easily done through interpretation of the spatial lagged
coefficient (see SI Text). We also tried a recently created matching approach that
attempts to algorithmically maximize covariate balance via a genetic search
algorithm (36). We saw little difference in the results (fewer than three percent-
age points). Rosenbaum bounds are calculated by using the McNemar test (31).
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